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Abstract
Real-world computer vision deployments often
require removing the data influence of specific
clients over time, not only forgetting entire classes
at once. In practice, data often arrives from mul-
tiple clients, and selectively unlearning only one
client’s contribution is a challenging task. We
formalize this setting as subset-wise sequential
forgetting: unlearning requests can arrive over
time, and the model must iteratively remove spec-
ified clients’ influence while preserving overall
performance. We propose a simple and practical
pipeline to achieve this. Our method combines
(i) a two-head multi task model (for class and
client/subset identification) trained with a loss
called the Disentanglement Loss, and (ii) param-
eter dampening for unlearning, guided by the di-
agonal Fisher Information Matrix. Experiments
on CIFAR-10 and CIFAR-100 with ResNet-18
show that our approach induces targeted forget-
ting while maintaining generalization. Unlike ag-
gressive pruning-based methods, it avoids large
and revealing performance gaps (which indicate a
specific client has been unlearned).

1. Introduction
Across AI systems, ranging from on-device models to large
foundation models, there is a recurring need to remove or
forget specific training data after deployment (e.g., consent
withdrawal or right-to-be-forgotten requests). Machine un-
learning seeks to remove the influence of specified data from
a trained model while preserving performance on remaining
data. Throughout this paper, we use the term “client” to
denote a source that contributes a subset of training data,
for example, an individual user in our experiments, or, in
web-scale text/multimedia collections, a website or content
provider. With the recent trend in LLMs, literature has em-
phasized LLMs (Scholten et al., 2025; Sakarvadia et al.,
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Figure 1. Problem statement: (a) class-wise setting; (b) client-wise
setting in which each client contains images from multiple classes.

2025; Liu et al., 2025; 2024). On the other hand, the lit-
erature in computer vision systems is mainly concentrated
on class-wise, one-class, and non-sequential forgetting (Go-
latkar et al., 2020; Shi et al., 2024; Foster et al., 2024; Ya-
mashita et al., 2024). However, many deployment scenarios
require multi-class and continual unlearning: client-wise
forgetting over time.

Problem setting. Unlearning can be instantiated along
different axes and with different mechanisms. Requests
may target semantic classes, data clients, or a hybrid
class+client specification (e.g., “forget class k for client
u”), and methods span retraining-based exact unlearning,
pruning/resetting, distillation, and Fisher-guided parameter
updates, the latter being the regime we investigate. Figure 1
contrasts two regimes: (a) Class-wise forgetting assumes
the forget request targets an entire semantic class (e.g., “re-
move class c”). This is the dominant setup in prior work; it
aligns labels and forget set and isolates the effect to a single
decision boundary. By construction, classes are disjoint,
so increasing loss on the target class has limited cross-talk
to other classes. (b) Client-wise (subset-wise) forgetting
targets a data client (subset) whose samples span multiple
classes. Forgetting a client, therefore, requires removing the
client’s contribution across many class-conditional decision
boundaries while preserving performance on other clients.
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(a) CLIP embeddings by class (b) CLIP embeddings by client

Figure 2. Our problem is harder: t-SNE of CLIP embeddings (Rad-
ford et al., 2021) shows class clusters are more separable than
client clusters, indicating client removal is more challenging than
class removal due to lower feature separability.

In realistic, non-IID deployments, client distributions are
heterogeneous and overlapping (cf. Figure 4), which makes
client-wise forgetting substantially more challenging than
class-wise forgetting.

We study the sequential client-wise setting: given a trained
model and an ordered stream of forget requests (c1, c2, . . . ),
we iteratively unlearn different clients ct while preserving
performance on the retain set and test distribution at each
step t. This sequential constraint precludes retraining from
scratch and penalizes methods that induce growing perfor-
mance gaps across rounds.

Defining the good performance Following Chundawat et al.
(2023) and Foster et al. (2024), we define good unlearning
as matching a gold model which is trained from scratch on
the retain set. Driving forgotten accuracy to 0 can induce
revealing behavior and expose the forgetting event. Jia
et al. (2023) suggests that pruning may simplify unlearning.
However, in our scenario, simplification is not the goal;
being close to the baseline and preserving generalization
is. Membership inference attacks (MIA) inquire whether an
attacker can distinguish training samples from non-training
samples via a model’s outputs; thus, aligning with the gold
model’s MIA can be considered a more faithful objective
than minimizing MIA. We instantiate MIA via a simple
logistic-regression attacker; see Section 5 for details.

Our approach. We address subset-wise sequential unlearn-
ing with a two-head multi task architecture (class and client
heads) trained with a loss function, called Disentanglement
Loss, aiming to make different client embeddings clustered
together. A post-hoc, Fisher-guided unlearning method, Se-
lective Synaptic Dampening Foster et al. (2024), is adopted
to remove a target client’s influence. We choose this update
over aggressive pruning or distillation-heavy pipelines be-
cause it is a lightweight, retrain-free method that provides
a small deviation from the gold model. Compared to prior
Fisher/pruning methods, our experiments show smaller and

less revealing (that a specific client has been unlearned)
gaps between forgotten and retained sets, and stable per-
formance across sequential requests. Compared to SSD
without a multi task learning (MTL) pipeline, our results
show competitive or better performance.

Contributions. Our contributions can be summarized as
follows:

• A realistic and challenging task design. We formal-
ize subset-wise, client-level unlearning under non-IID
client mixtures and sequential requests, a deployment-
driven setting largely absent from standard bench-
marks.

• Exploration of underexplored regimes. We sys-
tematically study underexplored areas; sequential and
multi-class forgetting in tandem, highlighting failure
modes of class-wise assumptions and pruning-heavy
approaches.

• A loss shaping term for learn/unlearn. We introduce
a loss function, namely the Disentanglement Loss. We
combine it with a training schedule that improves the
separability of client representations, aiding both initial
learning and subsequent unlearning.

• An MTL-based unlearning pipeline with client guar-
antees. We propose a two-head MTL pipeline coupled
with Fisher-guided, retrain-free dampening that pro-
vides experimental guarantees of forgetting for targeted
clients (via accuracy gaps and MIA), while matching
or slightly exceeding no-MTL baselines that offer no
user-wise guarantees.

2. Related Work
Fisher-based unlearning includes Fisher Forgetting (Go-
latkar et al., 2020), DeepClean (Shi et al., 2024), Selec-
tive Synaptic Dampening (SSD) (Foster et al., 2024), and
Unlearning with Mnemonic Code (Yamashita et al., 2024).
Some other recent noteworthy works include (Jia et al.,
2023) and (Kumaravelu et al., 2024).

Full Fisher Information. Golatkar et al. (2020) (using the
dense FIM) has been explored but is computationally ex-
pensive and memory-intensive; most practical methods, in-
cluding ours, use the diagonal FIM as a tractable curvature
proxy with strong empirical performance.

DeepClean-style pruning. Shi et al. (2024) propose reset-
ting privacy-sensitive weights using the Fisher diagonal. A
pruning approach identifies forget-sensitive weights via spe-
cialization ratios (e.g., coordinates where FDf

/FD exceeds
a threshold), prunes them, and then fine-tunes on the retain
set. While effective at suppressing the forget set, this of-
ten induces large gaps between forgotten and non-forgotten
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Figure 3. Illustration of the proposed sequential subset-wise unlearning pipeline. The network first learns from all clients. The network
has two output heads: (i) the main classification head for predicting class labels, and (ii) the subset (client) identification head for
distinguishing between different clients. The process consists of four stages: (1) Training: the model is trained on both tasks with Cross
Entropy and Disentanglement Loss; (2) Dampening: SSD is applied to unlearn the features most specific to the forget client; (3) Pruning:
the corresponding output neuron of the forgotten client in the subset-ID head is pruned to prevent re-learning; (4) Fine-tuning: an optional
short fine-tuning step can be applied to restore accuracy on retained data. For sequential unlearning, steps (2)–(4) are repeated iteratively.

performance in our client-wise setting, which can make for-
getting events more detectable and degrade generalization.

Selective Synaptic Dampening (SSD). Foster et al. (2024)
As a Fisher-guided alternative to aggressive pruning, SSD
uses the Fisher information of the training and forgetting
data to (i) select parameters that are disproportionately im-
portant to the forget set and (ii) dampen these parameters
by a factor proportional to their relative importance to Df

versus D. This proportional shrinkage preserves parame-
ters important to the retain distribution and typically yields
smaller deviations from baseline than hard pruning.

Pruning can simplify unlearning. Jia et al. (2023) show that
sparsity can make class-wise unlearning easier, suggesting
a potential synergy between pruning and unlearning. How-
ever, in our subset-wise, client-level scenario, strong pruning
tends to widen gaps between forgotten and non-forgotten
behavior, conflicting with our objective of remaining close
to the gold model.

One-shot unlearning via mnemonic codes. Yamashita et al.
(2024) propose an approach for settings with no access to
the original data: they generate per-class mnemonic codes,
encourage the model to memorize them, and use only these
codes to drive forgetting. This is well-suited to single-class
forgetting but does not directly extend to sequential, client-
wise requests.

Continual unlearning frameworks. UnCLe (Kumaravelu
et al., 2024) is, to our knowledge, the first continual unlearn-
ing framework; it couples knowledge distillation with multi-

ple loss terms to preserve utility while removing targeted in-
formation. Our work differs in that we pursue a retrain-free,
Fisher-guided post-hoc adjustment with an MTL architec-
ture tailored to client-wise unlearning.

3. Notation and Preliminaries
We study sequential subset-wise unlearning in a multi-client
setting: a model is trained on data aggregated from multiple
clients and, over time, receives one or more requests to
remove the influence of specific clients. The goal is to erase
the contribution of the requested client(s) while preserving
accuracy on the remaining data. Our pipeline for learning
and unlearning is summarized in Figure 3.

Formal setup. We denote the full training set by D =
{(xi, yi)}Ni=1 with class labels yi ∈ {0, . . . ,K − 1}. Data
are partitioned across C clients, and each sample has a client
(subset) label si ∈ {0, . . . , C − 1}. A forget request targets
either a single client c∗ or a set of clients; we write the
corresponding forget subset as Df ⊂ D and the retain subset
as Dr = D\Df . Throughout, we exemplify our contribution
on CIFAR-10 (K=10) and CIFAR-100 (K=100).

3.1. Client partitions via Dirichlet non-IID split

Because benchmark datasets like CIFAR-10/100 do not
include client identifiers, we synthesize client partitions to
emulate a multi-client scenario. This synthetic partitioning
is necessary to study client-wise unlearning when actual
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Figure 4. Client-class distribution heatmap (CIFAR-10, C=10,
α=0.6). Rows (y-axis) are clients ct and columns (x-axis) are
classes; color encodes sample counts. Lower α yields sharper
specialization (more non-IID), higher α approaches IID.

client metadata are unavailable. We partition the training
data across C clients using a Dirichlet distribution to induce
non-IID heterogeneity. For each class c ∈ {0, . . . , 9} we
draw proportions (Eq. (1))

πc ∼ Dirichlet(α1C), (1)

and allocate indices of class c to clients according to πc

(via cumulative splits). We use a concentration α = 0.6 and
a fixed seed for reproducibility. This generates a realistic
imbalance both in per-client class mixtures and total sample
counts.

Briefly, the Dirichlet distribution on the probability simplex
∆C−1 with parameter vector α ∈ RC

>0 has density (Eq. (2))

p(π;α) =
1

B(α)

C∏
k=1

παk−1
k , (2)

where B(α) is the multivariate Beta function (Bishop, 2006;
Murphy, 2012). Writing α0 =

∑C
k=1 αk, its moments are

(Eq. (3))

E[πk] =
αk

α0
,

Var[πk] =
αk(α0 − αk)

α2
0(α0 + 1)

,

Cov(πk, πℓ) = − αkαℓ

α2
0(α0 + 1)

.

(3)

In the symmetric case used here (α = α1C), α < 1 yields
sparse, highly heterogeneous proportions (clients special-
ize), α = 1 is uniform over the simplex, and α > 1 con-
centrates near uniform allocations. We choose α = 0.6 to
intentionally induce non-IID heterogeneity.

Figure 5. Client-class distribution heatmap (CIFAR-100, C=10,
α=0.6). Rows (y-axis) are clients ct and columns (x-axis) are
classes; color encodes sample counts. Lower α yields sharper
specialization (more non-IID), higher α approaches IID.

Client CIFAR-10 Samples CIFAR-100 Samples

client1 2575 5259
client2 5913 5105
client3 3263 4306
client4 5538 4391
client5 6895 4995
client6 2359 3820
client7 7847 5442
client8 7200 5365
client9 3226 5281
client10 5184 6036

Table 1. Per-client sample counts under the Dirichlet split (α=0.6)
for both CIFAR-10 and CIFAR-100 datasets.

4. Method
Objective and rationale. Our goal is subset-wise sequen-
tial unlearning: iteratively remove a target client’s influence
while preserving performance on retained data and staying
close to a gold model retrained on the retain set. We use a
two-head multi task design so that the subset/client-ID head
encourages representations that disentangle client-specific
factors from class semantics, making client footprints more
controllable for unlearning. For the actual unlearning step,
we adopt a Fisher-guided update (SSD, Foster et al. (2024))
that leverages a curvature-weighted view of the loss to selec-
tively dampen parameters specialized to the forget set while
protecting those important to the overall training distribution
(see the Taylor/Fisher justification in Section 4.3).

4.1. MTL task design

Backbone: ResNet-18. Heads: (1) main class head; (2)
subset/client-ID head. For a minibatch {(xi, yi, si)}Ni=1 the
training objective is (Eq. (4))

L = λ1Lmain + λ2Laux + λdisLdisentangle, (4)

with cross-entropy (CE) for both main and auxiliary (subset
identification) tasks. The disentanglement loss (DL) term
encourages within-subset compactness and between-subset
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separation in the embedding space zi (Eqs. (5)–(7)):

Lpull =
1

|S|
∑
s∈S

1

|Is|
∑
i∈Is

∥zi − z̄s∥2, (5)

Lpush =
1

|P|
∑

(s,s′)∈P

[
max(0, m− ∥z̄s − z̄s′∥)

]2
,

(6)

Ldisentangle = λpullLpull + λpushLpush. (7)

Here, S is the set of subset IDs in the minibatch; Is is the
index set of samples with subset label s; zi is the backbone
embedding of sample i; z̄s = 1

|Is|
∑

i∈Is
zi is the centroid

for subset s; P = {(s, s′) ∈ S × S : s ̸= s′} is the set of
distinct subset pairs; m > 0 is the margin; and ∥ · ∥ denotes
the Euclidean norm. If |S| = 1, then Lpush = 0.

The loss elements Lmain and Laux are Cross Entropy Loss
and their coefficients λ1 and λ2 are chosen as 1. The Laux’s
coefficient λdis is chosen as 0.1 to hinder a big effect on the
main learning task. λpull and λpush are chosen as 1.

4.2. Unlearning via SSD

Functioning principle. SSD ”forgets” by first finding pa-
rameters that matter much more for the forget set than for
the overall data (measured with diagonal Fisher via squared
gradients). It then shrinks only those specialized parameters
in proportion to their specialization, which raises loss on
the forget set while keeping the rest of the model stable.

Let FD and FDf
denote the diagonal Fisher information

over D and Df respectively (computed by squared gradi-
ents). SSD selects parameters specialized to Df (Eq. (8)):

S =
{
i : FDf ,i > αFD,i

}
, (8)

then dampens them proportionally (Eq. (9)):

βi = min

(
λFD,i

FDf ,i
, 1

)
, θ′i =

{
βiθi, i ∈ S,
θi, otherwise.

(9)

The proportionality part is important because it differs from
other Fisher-based methods. For example, in Yamashita
et al. (2024), important parameters are perturbed, while in
Shi et al. (2024), full pruning is applied to these parameters.

4.3. Taylor/Fisher view (a justification for Fisher-guided
unlearning)

Quadratic increase of loss under weight perturbations.
The one-dimensional Taylor expansion of a function f
around a point a is (Eq. (10))

f(x) = f(a)+f ′(a)(x−a)+ 1
2f

′′(a)(x−a)2+O
(
(x−a)3

)
.

(10)

For a multivariate loss L(w), expanding around optimized
weights w∗ with perturbation δ, we obtain (Eq. (11))

L(w∗+ δ) ≈ L(w∗)+∇L(w∗)⊤δ+ 1
2 δ

⊤H δ+O(∥δ∥3),
(11)

where H is the Hessian of L at w∗. At a stationary point
w∗, the gradient vanishes (Eq. (12)):

∇L(w∗) = 0. (12)

Hence, the expansion simplifies to (Eq. (13)):

L(w∗ + δ) ≈ L(w∗) + 1
2 δ

⊤H δ. (13)

If H is diagonalized (e.g., in an eigenbasis), the expression
becomes (Eq. (14))

L(w∗ + δ) ≈ L(w∗) + 1
2

∑
i

λi δ
2
i , (14)

where λi are the eigenvalues of the Hessian. Thus, along
directions with positive curvature (λi > 0), any nonzero
perturbation increases the loss to second order.

Remark. The higher-order term O(∥δ∥3) is omitted in this
quadratic approximation. Locally approximating the loss by
a quadratic form.

Under standard regularity conditions at an optimum, the
Fisher Information Matrix equals the Hessian in expecta-
tion(Bishop, 2006; Murphy, 2012). Using its (tractable)
diagonal, we arrive at the curvature-weighted approxima-
tion in Eq. (16), which we leverage to increase loss on a
target set while constraining loss on others for unlearning.
Let LS(θ) denote the empirical loss over a dataset S. For
a model trained to (a local) optimum θ∗ on D, we have
∇LD(θ

∗) = 0. A second-order expansion around θ∗ gives,
for a small perturbation δ,

LS(θ
∗ + δ) ≈ LS(θ

∗) + 1
2 δ

⊤HS δ, (15)

where HS is the Hessian of LS at θ∗. Under standard regu-
larity conditions, the Fisher Information Matrix (FIM) sat-
isfies E[∇ℓ∇ℓ⊤] = H at the optimum, and in practice we
use its diagonal FS = diag(FIMS) as a tractable curvature
proxy. With a diagonal approximation, Eq. (15) becomes

∆LS(δ) ≜ LS(θ
∗+δ)−LS(θ

∗) ≈ 1
2

∑
i

FS,i δ
2
i . (16)

Forgetting as a constrained quadratic objective. Un-
learning aims to increase the loss on the forget set Df while
limiting the loss increase on the original training distribution
D. Using Eq. (16), a natural formulation is

max
δ

1
2

∑
i

FDf ,i δ
2
i (17)

s.t. 1
2

∑
i

FD,i δ
2
i ≤ ε (18)



Subset-wise Sequential Machine Unlearning

for a small budget ε > 0 controlling deviation from the
trained solution. Since Eqs. (17)–(18) are separable in coor-
dinates, the optimal allocation prioritizes indices with the
largest specialization ratio

ρi =
FDf ,i

FD,i
. (19)

This immediately motivates SSD’s selection rule: update
only coordinates with FDf ,i > αFD,i (i.e., ρi > α) for a
threshold α > 0.

Dampening magnitude. The Lagrangian for Eqs. (17)–
(18) with diagonal curvature is L(δ, λ) = 1

2

∑
i FDf ,i δ

2
i −

λ
(
1
2

∑
i FD,i δ

2
i − ε

)
. Stationarity in each coordinate yields

δ2i ∝ λFD,i/FDf ,i. Translating a perturbation budget into
a multiplicative parameter shrinkage suggests

θ′i = βi θi, βi = min
(λFD,i

FDf ,i
, 1

)
, (20)

which matches SSD’s dampening rule: coordinates more
specialized to Df (large FDf ,i) receive stronger shrinkage,
while coordinates important to D (large FD,i) are protected.
The cap at 1 prevents growth for large multipliers.

Takeaway. The second-order (Taylor) view with a di-
agonal FIM links unlearning to a separable, constrained
quadratic problem. The solution structure precisely re-
covers SSD’s two components: (i) selection via a ratio
test FDf ,i > αFD,i, and (ii) dampening with factor βi in
Eq. (20). Thus, Fisher-guided selection and proportional
dampening are not ad hoc; they are the natural consequence
of maximizing loss on Df under a curvature-weighted bud-
get that preserves performance on D.

Sequential forgetting (MTL). We apply SSD and fine-
tuning iteratively; for already-forgotten clients we prune
their subset-ID neurons during evaluation and fine-tuning.

Sequential forgetting (no-MTL). No output neuron prun-
ing is needed; Fisher is computed on the main classification
task and the retain loss excludes the subset term.

4.4. Which head’s loss to use during FIM calculation?

A practical question in MTL is which head’s loss to use
when estimating the Fisher Information Matrix.

• FIM from the subset head. Using the subset/client-ID
head to compute the FIM did not open up the desired
gap relative to the MTL-free baseline. In practice,
the no-MTL pipeline yielded better main classification
accuracies.

Table 2. Main-task accuracy and subset-ID accuracy under
classification-head FIM, without output subset-ID neuron pruning.

Main task accuracy Subset ID Accuracy

Client 1 Others After SSD After 1 Epoch

Client 1 Others Client 1 Others

Values 0.9020 0.9610 0.2711 0.6551 0.4223 0.7327

• FIM from the main classification head. Using the
main class head to compute the FIM introduces a dif-
ferent issue: the subset-ID head is not fully forgotten
and can begin to re-learn during fine-tuning. For exam-
ple, the target subset’s subset-ID accuracy is not fully
driven down and rebounds after even a single epoch of
fine-tuning, while the Others subset-ID accuracy also
increases (Table 2).

Proposed solution. We compute the FIM from the clas-
sification head to maintain performance comparable to or
better than the no-MTL setting, and we prune the forgotten
subset’s output neuron in the subset-ID head to prevent its
accuracy from increasing during fine-tuning and evaluation.

5. Evaluation
We include full tables for CIFAR-10 and CIFAR-100 on
ResNet-18 for retain/forget/test accuracies, MIA, and delta-
to-gold score. We evaluate both MTL and no-MTL base-
lines and sequential multi-client forgetting. In the following
tables, CE refers to Cross Entropy loss and DL refers to
Disentanglement Loss.

Implementation details. We train for a total of T = 200
epochs. For epochs t = 1, . . . , 20, we optimize only the
main classification head with cross entropy (i.e., λ2=0
and λdis=0). For epochs t = 21, . . . , 200, we enable the
subset/client-ID head and the disentanglement loss, using
λ1=1, λ2=1, λdis=0.1, and λpull=λpush=1. This schedule
yields high subset-ID accuracy (approximately ∼ 99%) and
well-separated client representations that are later exploited
by Fisher-guided unlearning (cf. Tables 3 and 4).

Metrics. We evaluate with: (i) main classification accuracy
on the forgotten subset vs. other subsets; (ii) subset-ID
accuracy; (iii) test accuracy; and (iv) a train-only logistic-
regression MIA that distinguishes retain from forget samples
using the model’s softmax outputs.

Membership inference attack (MIA) and our regression
attacker. Membership inference attacks probe whether a
model’s outputs leak information about whether a sample
was in the training set. Following prior work (Chundawat
et al., 2023), we adopt a simple and strong attacker based
on multinomial logistic regression:
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Algorithm 1 Sequential subset-wise unlearning (MTL)
1: Input: baseline model M (0), client order C = [c1, . . . ], precomputed FD , fine-tune grids for epochs and (λclass, λsubset)
2: F ← ∅ (set of forgotten clients)
3: for t = 1, 2, . . . do
4: SSD: Given M (t−1) and current client ct, compute FDf (ct) (on subset task) and apply Eq. (20) to obtain M̃ (t).
5: Prune subset-ID output neuron: In M̃ (t), suppress output neurons for all clients in F ∪ {ct}.
6: Fine-tune (Optional): From M̃ (t), grid-search epochs ∈ {1, 2, 3} and (λclass, λsubset) using

L = CE(ŷr, yr) + λsubset CE(ŝr, sr)︸ ︷︷ ︸
retain

− (λclass max{0, af − abase
f })CE(ŷf , yf )︸ ︷︷ ︸

adversarial on forget

,

and select the checkpoint minimizing deviation from per-round baselines to get M (t).
7: F ← F ∪ {ct}
8: end for
9: Output: M (t) after the final round.

Algorithm 2 Sequential subset-wise unlearning (no-MTL)
1: Input: baseline model M (0), client order C = [c1, . . . ], precomputed FD , fine-tune grids for epochs and λclass
2: for t = 1, 2, . . . do
3: SSD: Given M (t−1) and current client ct, compute FDf (ct) (on main classification task) and apply Eq. (20) to obtain M̃ (t).
4: Fine-tune (Optional): From M̃ (t), grid-search epochs ∈ {1, 2, 3} and λclass using

L = CE(ŷr, yr)︸ ︷︷ ︸
retain

− (λclass max{0, af − abase
f })CE(ŷf , yf )︸ ︷︷ ︸

adversarial on forget

,

and select the checkpoint minimizing deviation from per-round baselines to get M (t).
5: end for
6: Output: M (t) after the final round.

Features: For MTL, we concatenate the main-head and
subset-head softmax probability vectors into a single feature
vector per sample. For no-MTL, we use the class-head
softmax only.

Labels: Outputs computed on retain data are labelled 0;
outputs computed on the (current) forget set are labelled 1.

Attacker training: We fit a multinomial logistic regression
classifier with class weight=balanced and 5-fold stratified
cross-validation, reporting cross-validated predictions. The
metric is overall classification accuracy (in percent).

Intuitively, if the unlearned model still behaves differently
on Df than on Dr, the attacker will separate the two and
achieve high accuracy. Our goal is for the MIA score to
match that of a gold model trained from scratch on Dr. This
avoids both extremes: high MIA (forgetting failed) and sus-
piciously low MIA coupled with pathological behavior (e.g.,
deliberately wrong predictions), which can reveal forgetting
events. Logistic regression is data-efficient, fast, and suf-
ficient here because the feature space (probability vectors)
already captures the separability induced by leakage.

Experimental setup. Our evaluation follows a two-step
protocol: first, we test with optional fine-tuning (applying
fine-tuning only if it improves performance), then we test

Table 3. Learning Phase performance on CIFAR-10. “-” indicates
not applicable.

Method Main Task Train Accuracy Subset ID Accuracy Main Task Test Accuracy

Without MTL (SSD) 0.9801 – 0.9064
MTL with CE (Ours) 0.9795 0.9767 0.8987
MTL with CE + DL (Ours) 0.9828 0.9936 0.9111

without any fine-tuning. We present results for CIFAR-10
experiments first, followed by CIFAR-100 experiments. We
also report other FIM-based methods like DeepClean and
Lottery Ticket-style pruning, as well as only pruning and
fine-tuning retain-sensitive weights.

Each unlearning round yields a checkpoint; we refer to these
as Stage 1–3: Stage 1 (after unlearning Client 1), Stage 2
(after unlearning Client 2 from a model that previously
unlearned Client 1), and Stage 3 (after unlearning Client 3
from a model that previously unlearned Client 1 and Client
2). Results with optional fine-tuning for CIFAR-10 are
summarized in Tables 5–7 and results without fine-tuning
for CIFAR-10 are summarized in Tables 8–10. Results
with optional fine-tuning for CIFAR-100 are summarized in
Tables 11–13 and results without fine-tuning for CIFAR-100
are summarized in Tables 14–16.
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Table 4. Learning Phase performance on CIFAR-100. “-” indicates
not applicable.

Method Main Task Train Accuracy Subset ID Accuracy Main Task Test Accuracy

Without MTL (SSD) 0.9898 – 0.6726
MTL with CE (Ours) 0.9993 0.9974 0.6724
MTL with CE + DL (Ours) 0.9996 0.9984 0.6920

5.1. Ablation: SSD hyperparameter search

Following recommendations on Foster et al. (2024), we
performed a small Optuna search over SSD hyperparameters
per round. On CIFAR-10, we ran 100 trials; on CIFAR-100,
we ran 50 trials. We used log-uniform suggestions over the
following ranges:

α ∼ log-uniform(0.1, 100.0),

λ ∼ log-uniform(0.01, 10.0).

We report the main results with the best-performing check-
points under our deviation-to-baseline criterion; detailed
ablations are consistent with the overall trends.

Values in parentheses denote divergence from the baseline;
smaller is better (closer to the gold model).

6. Discussion
Learning-phase (both for CIFAR-10 and CIFAR-100).
Table 3 and 4 show that adding Disentanglement Loss yields
the best subset-ID accuracy and increases overall classifica-
tion accuracy in the learning phase.

Pruning vs. dampening. Threshold-based pruning plus
retraining (DeepClean: Shi et al. (2024)-like) removes many
weights and induces large gaps between forgotten and non-
forgotten performance, making forgetting detectable. SSD
selects only specialized parameters and dampens them pro-
portionally, reducing deviation from baseline and preserving
generalization.

Why not pruning? As explained above, DeepClean or
Lottery Ticket-style pruning (Frankle & Carbin, 2019) can
enlarge the gap between forgotten and non-forgotten perfor-
mance, but typically at the cost of drifting farther from the
gold model. Conversely, when pruning only a small fraction
of the network to remain close to the baseline, we observe
substantial drops in subset-ID accuracy; restoring it to a rea-
sonable level (e.g., > 70%) can require more than 50 epochs
of fine-tuning, well beyond our regime (no fine-tuning or at
most 3 epochs). Detailed results for DeepClean and Lottery
Ticket-style pruning are provided in the tables (see Table 18
along with the baseline Table 17); as shown there, either
long fine-tuning (50+ epochs) is needed to recover subset-
ID accuracy, or the main classification accuracies remain
far from the gold model. In other words, either the target
subset is not forgotten or the subset-ID accuracy takes long
fine-tuning to recover.

MTL can help improve control. The subset-ID head and
disentanglement term might yield clearly separated client
embeddings, sharpening Fisher specialization and enabling
more precise SSD. Results in the tables in between 5 and 16
show that MTL design usually have a closer performance to
the baseline.

Limits of post-perturbation fine-tuning. In our pipeline,
dampening is a targeted perturbation applied near a local
optimum. Subsequent fine-tuning often yields limited gains
or even regressions: once optimization has converged, small-
step updates around the perturbed basin tend to restore pre-
perturbation behavior only partially while also eroding the
desired increase in forget-set loss. Empirically, we observe
that combining Fisher-guided dampening with additional
fine-tuning does not consistently improve the separation
we seek, especially for CIFAR-10 (see the Tables 6 and
7). It aligns with the intuition that local post-hoc updates
cannot reliably re-navigate to a better basin after a deliberate
curvature-weighted perturbation.

Is fine-tuning necessary? We noticed that, for CIFAR-100,
fine-tuning is necessary, especially for test set accuracy;
even just 3 epochs is very useful (see Tables 11, 12, and 13).
However, as explained in the previous paragraph, fine-tuning
was generally not needed for CIFAR-10, showing that an
increase in the number of classes can make the training-free
unlearning further challenging.

CIFAR-100 nuance on fine-tuning selection. On CIFAR-
100, we further observed that post-hoc fine-tuning can bias
our checkpoint selection in favor of the fine-tuned models
even when per-client (”unlearned”) accuracies are not ac-
tually better. The deciding factor is the Others main-task
accuracy, which tends to saturate under fine-tuning; this
single component then dominates the selection criterion.
In contrast, without fine-tuning, the unlearned accuracies
are typically closer to the baseline (gold) model. In short,
only the Others accuracy term meaningfully shifts with fine-
tuning, which can mask that the unlearned metrics are better
without it. See the comparison of fine-tuned CIFAR-100
Tables 11, 12, 13 and not fine-tuned CIFAR-100 Tables 14,
15, 16.

7. Conclusion
We have formalized and addressed the challenging problem
of subset-wise sequential machine unlearning, where forget
requests target data clients spanning multiple classes rather
than single classes. Our approach combines a two-head
multi task learning architecture with disentanglement loss
and Fisher Information Matrix-guided Selective Synaptic
Dampening to achieve targeted forgetting while preserving
performance on retained data.

Key findings from our experiments on CIFAR-10 and
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Table 5. CIFAR-10 Approximate Unlearning in Stage 1. Values in parentheses denote divergence from the baseline.
Main Task Accuracy Subset ID Accuracy MIA Is Fine-tuning Better?

Method Client 1 Others Test Client 1 Others

Without MTL (SSD) 0.9010 (0.0017) 0.9584 (0.0415) 0.8719 (0.0342) - - 74.0440 (0.0113) Yes (3 Epochs)
MTL with CE (Ours) 0.9049 (0.0074) 0.9630 (0.0365) 0.8822 (0.0220) 0 0.8027 (0.1882) 78.3640 (0.0139) No
MTL with CE + DL (Ours) 0.9033 (0.0004) 0.9702 (0.0272) 0.8914 (0.0216) 0 0.7529 (0.2445) 77.8700 (0.0181) Yes (1 Epoch)

Table 6. CIFAR-10 Approximate Unlearning in Stage 2. Values in parentheses denote divergence from the baseline.
Main Task Accuracy Subset ID Accuracy MIA Is Fine-tuning Better?

Method Client 1 Client 2 Others Test Client 1 Client 2 Others

Without MTL (SSD) 0.8967 (0.0016) 0.8853 (0.0069) 0.9279 (0.0721) 0.8508 (0.0423) - - - 70.3279 (0.0860) No
MTL with CE (Ours) 0.8979 (0.0023) 0.8973 (0.0130) 0.9302 (0.0693) 0.8475 (0.0511) 0 0 0.7872 (0.2068) 72.0865 (0.0481) No
MTL with CE + DL (Ours) 0.8993 (0.0114) 0.8955 (0.0010) 0.9367 (0.0632) 0.8508 (0.0544) 0 0 0.7487 (0.2498) 74.5000 (0.0563) No

CIFAR-100 include: (1) MTL pipeline performs compa-
rable to or better than the no-MTL setting in maintaining
proximity to gold models, (2) Fisher-guided dampening pro-
vides more controlled forgetting compared to aggressive
pruning methods, and (3) our approach handles sequential
forget requests without catastrophic degradation.

Our method addresses a realistic deployment scenario where
machine learning systems must accommodate evolving pri-
vacy requirements and client-specific data removal requests.
By maintaining performance close to the gold model while
avoiding computationally expensive full training, our ap-
proach offers a practical solution for continual unlearning
in multi-client environments.

Limitations
Several limitations should be acknowledged in our work.
First, our evaluation is restricted to image classification
tasks on CIFAR-10 and CIFAR-100 with ResNet-18. Gener-
alizability to other domains, architectures, and larger-scale
datasets with different Dirichlet distributions and number of
clients remains to be demonstrated.

Additionally, experiments were conducted on Kaggle P100
GPUs; a more robust evaluation can be performed by run-
ning multiple seeds on more powerful GPUs and reporting
the average results.

Impact Statement
This work aims to provide efficient unlearning in a real-
istic task design, which includes client-wise settings and
sequential forget requests. Risks include misuse to mask
data removal or regulatory gaming, or superficial compli-
ance, which gives the appearance of following regulations
without achieving their intended purpose; we mitigate by
targeting similarity to a gold model and avoiding revealing
gaps that telltale forgetting.
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Table 9. CIFAR-10 Approximate Unlearning in Stage 2 (No fine-tuning). Values in parentheses denote divergence from the baseline.
Main Task Accuracy Subset ID Accuracy MIA

Method Client 1 Client 2 Others Test Client 1 Client 2 Others

Without MTL (SSD) 0.9064 (0.0113) 0.8901 (0.0117) 0.9295 (0.0705) 0.8398 (0.0533) - - - 68.7106 (0.0697)
MTL with CE (Ours) 0.8905 (0.0062) 0.8904 (0.0061) 0.9304 (0.0691) 0.8475 (0.0511) 0 0 0.7877 (0.2063) 64.11 (0.0165)
MTL with CE + DL (Ours) 0.9017 (0.009) 0.8957 (0.0012) 0.9273 (0.0726) 0.8615 (0.0437) 0 0 0.6613 (0.3372) 64.00 (0.007)

Table 10. CIFAR-10 Approximate Unlearning in Stage 3 (No fine-tuning). Values in parentheses denote divergence from the baseline.
Main Task Accuracy Subset ID Accuracy MIA

Method Client 1 Client 2 Client 3 Others Test Client 1 Client 2 Client 3 Others

Without MTL (SSD) 0.8637 (0.0120) 0.8874 (0.0129) 0.8964 (0.0052) 0.9246 (0.0753) 0.8338 (0.0581) - - - - 59.4792 (0.0157)
MTL with CE (Ours) 0.8579 (0.0182) 0.8747 (0.0018) 0.9078 (0.0095) 0.9122 (0.0859) 0.9122 (0.0253) 0 0 0 0.7793 (0.1942) 61.32 (0.0105)
MTL with CE + DL (Ours) 0.9115 (0.0109) 0.8999 (0.0054) 0.9166 (0.0018) 0.9277 (0.0719) 0.8612 (0.0413) 0 0 0 0.6989 (0.2977) 64.201 (0.0002)

Table 11. CIFAR-100 Approximate Unlearning in Stage 1. Values in parentheses denote divergence from the baseline.
Main Task Accuracy Subset ID Accuracy MIA Is Fine-tuning Better?

Method Client 1 Others Test Client 1 Others

Without MTL (SSD) 0.8365 (0.2497) 0.9172 (0.0827) 0.6231 (0.0025) - - 68.2460 (0.0415) Yes (1 Epoch)
MTL with CE (Ours) 0.8882 (0.2468) 0.9472 (0.0525) 0.6607 (0.0084) 0 0.8506 (0.1488) 68.8940 (0.0177) Yes (3 Epochs)
MTL with CE + DL (Ours) 0.8863 (0.2428) 0.9431 (0.0567) 0.6648 (0.0260) 0 0.8932 (0.1063) 69.4560 (0.0214) Yes (3 Epochs)

Table 12. CIFAR-100 Approximate Unlearning in Stage 2. Values in parentheses denote divergence from the baseline.
Main Task Accuracy Subset ID Accuracy MIA Is Fine-tuning Better?

Method Client 1 Client 2 Others Test Client 1 Client 2 Others

Without MTL (SSD) 0.7678 (0.2158) 0.7980 (0.2581) 0.9415 (0.0583) 0.6177 (0.0175) - - - 68.7535 (0.0858) Yes (3 Epochs)
MTL with CE (Ours) 0.8562 (0.2401) 0.8872 (0.2800) 0.9602 (0.0396) 0.6489 (0.0081) 0 0 0.8894 (0.1099) 70.0409 (0.0457) Yes (3 Epochs)
MTL with CE + DL (Ours) 0.8528 (0.2287) 0.8668 (0.2517) 0.9618 (0.0380) 0.6614 (0.0072) 0 0 0.9247 (0.0749) 69.9537 (0.4662) Yes (3 Epochs)

Table 13. CIFAR-100 Approximate Unlearning in Stage 3. Values in parentheses denote divergence from the baseline.
Main Task Accuracy Subset ID Accuracy MIA Is Fine-tuning Better?

Method Client 1 Client 2 Client 3 Others Test Client 1 Client 2 Client 3 Others

Without MTL (SSD) 0.7201 (0.1829) 0.7295 (0.2071) 0.7534 (0.2543) 0.9300 (0.0698) 0.6067 (0.0323) - - - - 74.2835 (0.1521) Yes (2 Epochs)
MTL with CE (Ours) 0.8464 (0.2474) 0.8568 (0.2597) 0.8488 (0.2868) 0.9470 (0.0528) 0.6419 (0.0060) 0 0 0 0.9133 (0.0862) 74.9924 (0.0800) Yes (2 Epochs)
MTL with CE + DL (Ours) 0.8395 (0.2310) 0.8511 (0.2476) 0.8558 (0.2782) 0.9602 (0.0396) 0.6491 (0.0004) 0 0 0 0.9363 (0.0633) 75.5374 (0.0820) Yes (3 Epochs)

Table 14. CIFAR-100 Approximate Unlearning in Stage 1 (No fine-tuning). Values in parentheses denote divergence from the baseline.

Main Task Accuracy Subset ID Accuracy MIA

Method Client 1 Others Test Client 1 Others

Without MTL (SSD) 0.5872 (0.0004) 0.8180 (0.1819) 0.5371 (0.0835) - - 66.5520 (0.0245)
MTL with CE (Ours) 0.6828 (0.0414) 0.8828 (0.1169) 0.6353 (0.0338) 0 0.8435 (0.1559) 65.1000 (0.0013)
MTL with CE + DL (Ours) 0.6406 (0.0029) 0.8612 (0.1386) 0.6174 (0.0734) 0 0.8439 (0.1556) 65.09 (0.0004)

Table 15. CIFAR-100 Approximate Unlearning in Stage 2 (No fine-tuning). Values in parentheses denote divergence from the baseline.
Main Task Accuracy Subset ID Accuracy MIA

Method Client 1 Client 2 Others Test Client 1 Client 2 Others

Without MTL (SSD) 0.5054 (0.0466) 0.5397 (0.0002) 0.7618 (0.2380) 0.4910 (0.1092) - - - 63.1971 (0.030)
MTL with CE (Ours) 0.5685 (0.0476) 0.6670 (0.0598) 0.7773 (0.2225) 0.5423 (0.1147) 0 0 0.7773 (0.2220) 64.0111 (0.0135)
MTL with CE + DL (Ours) 0.5575 (0.0666) 0.6239 (0.0088) 0.7674 (0.2324) 0.5362 (0.1324) 0 0 0.8356 (0.1640) 61.0150 (0.0002)

Table 16. CIFAR-100 Approximate Unlearning in Stage 3 (No fine-tuning). Values in parentheses denote divergence from the baseline.
Main Task Accuracy Subset ID Accuracy MIA

Method Client 1 Client 2 Client 3 Others Test Client 1 Client 2 Client 3 Others

Without MTL (SSD) 0.4493 (0.0879) 0.4964 (0.0260) 0.5016 (0.0025) 0.7206 (0.2792) 0.4522 (0.1222) - - - - 66.3488 (0.0723)
MTL with CE (Ours) 0.5193 (0.0797) 0.6065 (0.0094) 0.5506 (0.0140) 0.7464 (0.2534) 0.5073 (0.1340) 0 0 0 0.7969 (0.2026) 63.1161 (0.0209)
MTL with CE + DL (Ours) 0.5372 (0.0713) 0.5806 (0.0229) 0.5915 (0.1300) 0.7439 (0.2559) 0.5102 (0.1393) 0 0 0 0.8360 (0.1636) 61.2266 (0.0103)
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Table 17. CIFAR-10 Stage 1 baseline (gold model) metrics prior to pruning-based unlearning.
Main Task Accuracy Subset ID Accuracy MIA

Client 1 Others Test Client 1 Others

0.9056 0.9998 0.9130 0 0.9974 75.44

Table 18. Pruning ablations on CIFAR-10 Stage 1. Selected weight percentages are over ResNet-18; heads are included in fine-tuning.
Results illustrate the trade-off: recovering subset-ID often requires long fine-tuning (50+ epochs), otherwise main classification accuracies
deviate from the gold model.

Selected Weights’ % Heads in FT Method Main Task Accuracy Subset ID Accuracy MIA

Forget Retain Client 1 Others Test Client 1 Others

0.1 0.1 True lottery ticket 0.9738 0.9899 0.9021 0 0.8821 76.34
0.1 0.1 False lottery ticket 0.9814 0.9873 0.9035 0 0.8769 77.18
0.2 0.2 True lottery ticket 0.9139 0.9672 0.8839 0 0.7055 73.96
0.2 0.2 False lottery ticket 0.8949 0.9591 0.8788 0 0.6865 74.34
0.4 0.2 True lottery ticket 0.8349 0.9135 0.8416 0 0.4423 73.85
0.4 0.2 False lottery ticket 0.8173 0.9000 0.8321 0 0.4227 76.47
0.1 0.1 True retain-sensitive 0.9795 0.9924 0.9059 0 0.8965 78.25
0.1 0.1 False retain-sensitive 0.9776 0.9898 0.9022 0 0.9093 78.96
0.2 0.2 True retain-sensitive 0.9439 0.9782 0.8855 0 0.8140 76.91
0.2 0.2 False retain-sensitive 0.9315 0.9727 0.8890 0 0.8194 76.03
0.4 0.2 True retain-sensitive 0.8844 0.9430 0.8643 0 0.5723 73.84
0.4 0.2 False retain-sensitive 0.8763 0.9433 0.8652 0 0.5663 75.84
0.1 – True DeepClean 0.9924 0.9954 0.9097 0 0.9308 77.80
0.1 – False DeepClean 0.9910 0.9945 0.9099 0 0.9315 80.79
0.2 – True DeepClean 0.9729 0.9827 0.8974 0 0.8206 77.07
0.2 – False DeepClean 0.9700 0.9837 0.8985 0 0.8169 77.70
0.4 – True DeepClean 0.8863 0.9524 0.8759 0 0.5792 74.11
0.4 – False DeepClean 0.8868 0.9454 0.8676 0 0.5748 74.04


